


Modern methods of 3D reconstruction from line draw-
ings are often optimization based. The seminal work by
Marill [14] presented a very simple regularity for 3D recon-
struction, i.e., minimizing the standard deviation of the
angles (MSDA) in the reconstructed objects so that a 2D line
drawing can be inflated into a 3D shape. Motivated by
MSDA, Brown and Wang [24] proposed to minimize the
standard deviation of the segment magnitudes (MSDSM),
and Shoji et al. [25] presented the criterion of minimizing
the entropy of angle distribution (MEAD). MSDA, MSDSM,
and MEAD can only recover simple objects from line draw-
ings. Leclerc and Fischler’s method [11] considers not only
MSDA but also the planarity constraint on the faces of the
object (planarity constraint is a powerful property and
many methods have been proposed to find faces from a line
drawing [26], [27], [28], [29], [30], [31]). This method per-
forms better than MSDA, MSDSM, and MEAD. Later,
Lipson and Shpitalni [3] extended Leclerc and Fischler’s
method by using more constraints like line parallelism, line
verticality, isometry, etc., enabling the reconstruction of
more complex objects than Leclerc and Fischler’s. Based on
the works [3], [11], [14], Turner et al. recovered simple pla-
nar 3D objects from scenes [32]. Shesh and Chen applied
Lipson and Shpitalni’s algorithm to their sketching system
in [33]. Liu et al. proposed a plane-based optimization
method in [12] which finds desired objects in a much lower
dimensional search space by enforcing a set of linear con-
straints on the unconstrained optimization problem. Their
method can tackle 3D reconstruction of more complex
objects, but fail to obtain an expected 3D object when the
degree of reconstruction freedom of an object is large [13].

Our work might be the most relevant to that by Liu et al.
[13], which also presented a line drawing decomposition
algorithm. As illustrated in Fig. 2, their algorithm firstly
decomposes a line drawing into a set of simpler line draw-
ings (LD1 and LD2 in Fig. 2b) along internal faces (f�,
marked in red in Fig. 2a), then reconstructs 3D shapes (O1

and O2 in Fig. 2c) from the resulting simpler line drawings
independently, and finally merges the 3D shapes together
and fine-tunes the merged 3D model. By decomposing a
complex line drawing into simpler line drawings, their
method avoids the search in a high dimension space.

One of the limitations of the method in [13] is that the
decomposition algorithm based on finding internal faces is
NP-complete. To make this algorithm run in tolerable time,
a predefined maximum search depth has to be set. There-
fore, it cannot find an internal face when the number of its

edges is larger than the threshold. Another deficiency of
[13] is that the 3D shapes are reconstructed independently
from the decomposed line drawings, without using the geo-
metrical relationships between the decomposed line draw-
ings. This might cause artifacts in the subsequent merging
step, e.g., non-planar faces in the complete model in Fig. 2d
after merging O1 and O2 via f�1 and f�2 . This is mainly
because while f�1 and f�2 are consistent in the decomposed
line drawings, the corresponding faces in O1 and O2 might
become inconsistent due to independent reconstruction.
This justified their extra fine-tuning step, which, however,
does not always work well and is time consuming.

Our progressive reconstruction method based on an esti-
mate-and-optimize strategy shares some resemblances to
those proposed in [3], [10], and [34], which employ certain
geometrical properties to provide an initial guess for the sub-
sequent optimization-based 3D reconstruction. For example,
to obtain a preliminary approximation of the object, Lipson
and Shpitalni [3] assume that the edges in the line drawing
have three main axis directions. The approach of Company
et al. [10] is applicable only to the input line drawing repre-
senting a (quasi-)normalon, while the method proposed by
Lee and Fang [34] requires the availability of at least one
cubic corner in a desired object. Our approach does not
require such special geometrical properties of an underlying
object in the line drawing. This is achieved by decomposing
the line drawing into multiple parts and progressively opti-
mizing each part, instead of solving the optimization prob-
lem on the entire line drawing. Our approach is thus more
general and is applicable to awider class of objects.

3 ASSUMPTIONS, PREPROCESSING, AND
TERMINOLOGY

Similar to [13], our paper focuses on 3D reconstruction of a
large class of common planar-faced solids, called manifolds.
On the surface of a manifold, every point has a neighbor-
hood topologically equivalent to an open disk in the 2D
Euclidean space [35]. A line drawing in this paper is
assumed to be an orthographic projection of the edges of a
3D planar-faced manifold in a generic view, with hidden
lines and vertices visible.

Preprocessing. The face topology is very crucial for the line
drawing decomposition and reconstruction. Given a line
drawing, we use the algorithm in [28] to find its face topol-
ogy. Here, the face topology denotes the set of circuits that
represent all the faces of the 3D object. For example, the
line drawing in Fig. 3a has 15 faces, as shown in Fig. 3b. See
another example in Figs. 4c and 4d. Artificial lines (see
examples in Fig. 3c), added by the designer, are used to
indicate the coplanarity of two circuits in solid modeling
[36], [28]. Detecting artificial lines is an easy task according
to the connection between an artificial line and the edges it
connects to [13]. After removing the artificial lines, a line

Fig. 1. Our 3D reconstruction pipeline. (a) and (b) show that a line draw-
ing is decomposed into three parts, and (c) and (d) illustrate the progres-
sive reconstruction which sequentially and dependently reconstructs the
3D shapes from the three parts. Note that the good initial depths of the
vertices circled by tu in (c) are estimated from the depths of the vertices
marked by� of the already reconstructed middle part.

Fig. 2. Illustration of the reconstruction method in [13].
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drawing becomes two or more separated line drawings
(Fig. 3d).

For better understanding of the contents in the following
sections, we here give the definitions of the terms that
appear in the rest of the paper.

Definition 1. Let a line drawing be the projection of a 3D object.
The minimum number of depths (z-coordinates) that can
uniquely define this 3D object is called the degree of recon-
struction freedom for the line drawing.
This definition comes from [12], where DRF is used to

find a search space for 3D reconstruction. Instead, in our
paper, it is used to decompose complex line drawings.
Now, let us analyze the DRF for a simple line drawing
shown in Fig. 4a. Assume that the line drawing is the pre-
cise projection of a 3D planar-faced object. Thus, all 3D ver-
tices on the same face are coplanar. For example, all the
vertices v1�4 are on the plane defined by a1xþ b1yþ c1�
z ¼ 0, which passes through the face f1 ¼ ðv1; v2;v3;v4Þ.
Next, we can show that the 3D object is defined if z1; z2; z3,
and z5 are given, where zi is the depth value of vertex vi.
When z1; z2 and z3 are known, the 3D plane a1xþ b1yþ c1�
z ¼ 0 is defined. Then, z4 can be calculated by z4 ¼ a1x4þ
b1y4 þ c1. Since z4 is known and z1 and z5 are given, v8 is
determined because it lies on the plane defined by v1;v5

and v4. Analogously, the depths of all other vertices can be
determined. On the other hand, it is obvious that the given
depth values of only three vertices are not sufficient to

determine a unique 3D object for this line drawing. There-
fore the DRF for this drawing is 4.

Definition 2. Let a line drawing be LD ¼ ðV; E;FÞ where V, E,
and F are the sets of vertices, edges, and faces of LD, respec-
tively. A partial line drawing, or a part of LD is formed by one
or more connected faces denoted by LDp ¼ ðVp; EpÞ with
Vp � V and Ep � E. A neighboring face of LDp is a face that
has at least one edge (but not all) in LDp. Given two parts
LDp1 and LDp2 , let F ðLDp1Þ and F ðLDp2Þ be the sets of the
faces in LDp1 and LDp2 , respectively; let EðLDp1Þ and
EðLDp2Þ be the sets of the edges in LDp1 and LDp2 , respec-
tively. LDp1 and LDp2 are called two neighboring parts if
F ðLDp1Þ \ F ðLDp2Þ ¼ ? and EðLDp1Þ \EðLDp2Þ 6¼ ? .

Fig. 4b shows two parts of the line drawing in Fig. 4a.
The face f1 in LDp2 is a neighboring face of the part
LDp1 ¼ ff4 [ f5g. In Fig. 4e, LDp1 and LDp2 are two neigh-

boring parts, which share the same circuit (in blue) but
share no face.

Definition 3. A 4DRF part is a part whose DRF is four. A
manifold is called a 4DRF manifold if the DRF for its line
drawing is four.
Fig. 5 shows four examples of 4DRF line drawings. Their

complexities vary, though they have the same DRF. The line
drawing in Fig. 5c has only two faces. It is the simplest
4DRF line drawing. The line drawing shown in Fig. 5a has
six faces and is more complex. It is easy to show that a
4DRF line drawing or 4DRF partial line drawing has at least
two faces. The cuboid represented by the line drawing in
Fig. 5a is a 4DRF manifold.

Definition 4. A 4DRF-extended part of a 4DRF part LDp,
denoted as 4DRFExtðLDpÞ, is the part which contains LDp
and one neighboring face of LDp, which has two non-collinear
edges in LDp. The largest-4DRF-extended part of a 4DRF part
LDp, denoted as Largest4DRFExtðLDpÞ, is the 4DRF part
which has the largest number of faces among the parts, each of
which contains LDp.

Note that the DRFs of LDp, 4DRFExtðLDpÞ, and Largest
4DRFExtðLDpÞ are all four. As shown in Fig. 4b, given a part
LDp1 (LDp1 ¼ ff4 [ f5g), a 4DRF-extended part of LDp1 is the

partial line drawing which contains all the faces in LDp1 and

the face f1, since f1 passes through two non-collinear edges in
LDp1 . For a 4DRF part of a line drawing, it may have no

4DRF-extended part. As shown in Fig. 4e, each neighboring
face of ff3 [ f7g shares less than two non-collinear edges with
ff3 [ f7g and hence the part ff3 [ f7g has neither 4DRF-
extendedpart nor largest-4DRF-extendedpart. It isworth not-
ing that a largest-4DRF-extended part does not necessarily
represent a manifold, though this work focuses the decompo-
sition of line drawings representingmanifolds only.

Fig. 4. Illustration of some terms. (a) A line drawing representing a hexa-
hedron. (b) Two 4DRF parts of the line drawing in (a), where the part
LDp2 is a 4DRF-extended part of LDp1 . (c) Another line drawing which
has ten faces. (d) Ten identiÞed faces of the line drawing in (c). (e) Two
neighboring parts LDp1 ¼ ff1 [ f2 [ f3 [ f4 [ f5} and LDp2 ¼ ff6 [ f7
[f8 [ f9 [ f10}. Once the 3D vertices of LDp1 are recovered, the part
LDp2 is the largest-conditional-1DRF neighboring part ofLDp1 .

Fig. 3. (a) A line drawing. (b) Face circuits of the line drawing in (a). (c)
Two artiÞcial lines fx; wg and fu; vg. (d) Two separated line drawings
after preprocessing the line drawing in (c). Fig. 5. Examples of 4DRF line drawings.
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Given a 4DRF part LDp, the following procedure
4DRFExt F ðLDpÞ (Procedure 1) obtains one possible 4DRF-
extended part:

Procedure 1. 4DRFExt F ðLDpÞ
1. LDtmp  LDp;
2. add a neighboring face of LDp to LDtmp
if this face has two non-collinear edges in LDtmp;

3. 4DRFExtðLDpÞ  LDtmp;

Procedure 2. Largest4DRFExt F ðLDpÞ
1. LDtmp  LDp;
2. LD0tmp  4DRFExt F ðLDtmpÞ;
3. if LD0tmp � LDtmp
4. LDtmp  LD0tmp; goto Step 2;
5. Largest4DRFExtðLDpÞ  LD0tmp.

Obviously, the output of 4DRFExt F ðLDpÞ is a valid
4DRF-extended part of LDp only if 4DRFExt F ðLDpÞ �
LDp (6¼ LDp ) is satisfied. Based on 4DRFExt F ðLDpÞ, start-
ing from a 4DRF part, called a seed, Largest4DRFExtðLDpÞ
can be obtained by the procedure Largest4DRFExt F ðLDpÞ
(Procedure 2).

Definition 5. A neighboring part of a part LDp is called a
conditional-1DRF neighboring part of LDp if its DRF is 1
when the 3D coordinates of all the vertices of LDp are known.
A conditional-1DRF neighboring part of LDp is called the
largest-conditional-1DRF neighboring part of LDp if it has the
maximum number of faces among all the conditional-1DRF
neighboring parts of LDp. Given a neighboring face f of LDp,
the largest-conditional-1DRF neighbor part of LDp containing
f is denoted as LargestCon1DRF ðLDp; fÞ.
We take the line drawing shown in Fig. 4e to illustrate the

two terms in Definition 5. Assume that a 3D shape has been
reconstructed from the part LDp1 ¼ ff1 [ f2 [ f3 [ f4 [ f5g.
From Definition 2, there exist multiple neighboring parts of
LDp1 , such as ff6g, ff6 [ f7g, and LDp2 ¼ ff6 [ f7 [ f8[
f9 [ f10g. All of them are also conditional-1DRF neighboring
parts of LDp1 , since when the 3D shape of LDp1 is known,

the depth of one vertex (not in LDp1 ) of such a part can

uniquely define the 3D position of this part.
Given a part LDp and one of its neighbor faces f ,

LargestCon1DRF ðLDp; fÞ can be obtained by the following
procedure LargestCon1DRF F ðLDp; fÞ:

Procedure 3. LargestCon1DRF F ðLDp; fÞ
1. LDtmp  f;
2. LD0tmp  LDtmp;
3. for each neighboring face fj of {LDp [ LDtmp} do
4. if fj has two non-collinear edges in {LDp [ LDtmp}
5. LD0tmp  fLD0tmp [ fjg;
6. end for
7. if LD0tmp � LDtmp

LDtmp  LD0tmp; goto Step 2;

8. LargestCon1DRF ðLDpÞ  LD0tmp.

In Fig. 4e, arbitrarily selecting a neighboring face of LDp1 ,
say f7, we have LargestCon1DRF
ðLDp1 ; f7Þ ¼ LDp2 by running the procedure LargestCon

1DRF F ðLDp1 ; f7Þ (Procedure 3) .

Definition 6. A dual graph G of a line drawing LD is a graph
whose vertices denote the faces of LD, and each of whose edges
connects two vertices that are neighboring faces of LD.

An example of a line drawing and its corresponding dual
graph can be found in Figs. 7a and 7b, respectively.

4 DRF-BASED DECOMPOSITION

We first introduce the details of our DRF-based line draw-
ing decomposition algorithm and then discuss its computa-
tional complexity.

4.1 Algorithm
We observed that many man-made objects, like the house
model shown in Fig. 6, are usually formed by simpler mani-
folds whose DRFs are four. This motivated us to separate a
complex line drawing into a set of 4DRF parts. The resulting
4DRF parts are much less complex and usually have regular
geometry, making their 3D reconstruction much easier.

However, for such complex line drawings, finding parts
with low DRFs corresponding to manifolds is not trivial.
Liu et al. [13] proposed to decompose a complex line draw-
ing from its internal faces where simpler objects are glued.
Unfortunately, their algorithm to find the internal faces
from a line drawing is NP-complete. To make it run in a rea-
sonable time, a predefined maximum search depth has to be
set. As a result, the internal faces cannot be found when the
numbers of their edges are larger than the threshold.

Different from [13], our work utilizes a DRF-based
algorithm to decompose a line drawing into a set of parts
which are approximate to the 4DRF parts representing
manifolds. More specifically, our algorithm sequentially
decomposes a line drawing into a set of largest-4DRF-
extended parts and largest-conditional-1DRF neighboring
parts. Fig. 6 shows a decomposition result by our algo-
rithm, compared to that by the algorithm in [13]. For this
example, both the algorithms lead to successful but
slightly different decompositions. We will give a thor-
ough evaluation of these two algorithms in Section 6.

The detailed decomposition steps are summarized in
Algorithm 1 and illustrated in Fig. 7. In Step 1, the dual graph
G (Fig. 7b) of the input line drawing G0 is built to facilitate the
design of the decomposition algorithm. Gu in Step 2 is a sub-
graph of G, and is used to keep the currently decomposed

Fig. 6. Illustration of the proposed decomposition algorithm. (a) A 2D line
drawing representing a manifold object. (b) 3D object corresponding to
(a). (c) Parts obtained by the algorithm in [13], which decomposes a line
drawing along the internal faces of the object. (d) Parts obtained by our
DRF-based algorithm.
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computation of Steps 4-9 is determined by Steps 5-8, and
thus the computation of Steps 4-9 is also bounded by

OðKe
2NeNf

2Þ. The main computation of Steps 10-13 is deter-
mined by the procedure Largest4DRFExt F ðÞ in Step 10,
which is approximately equal to repeated execution of
4DRFExt F ðÞ for Nf=Kp times. Thus, the time of one execu-

tion Largest4DRFExt F ðÞ is bounded by OðKeNeNf
2=KpÞ.

Then, the total time of obtaining a largest-4DRF-extended

part (Steps 3-13) is bounded by OðKeNfÞ þOðKe
2NeNf

2Þþ
OðKeNeNf

2=KpÞ ¼ OðKe
2NeNf

2Þ.
Next, we discuss the complexity of Steps 14-21. In these

steps, the algorithm first checks if Gu has a conditional-
1DRF neighboring part or not (Steps 15-17), and then finds a
conditional-1DRF neighboring part (Steps 19-21) or another
largest-4DRF-extended part (Steps 3-13). The complexity of
Steps 14-21 is thus approximate to the time taken by Steps 3-
13. Finally, the algorithm conducts Steps 3-13 or Steps 14-21
for Kp times. Considering Ke is constant, we have the com-

plexity of Algorithm 1 bounded by OðK2
e NeNf

2KpÞ =

OðKpNeNf
2Þ, which is polynomial.

In fact, from our experiments, we find that the time spent
by Algorithm 1 and by the line drawing preprocessing step
(typically less than 1 second), can be almost neglected com-
pared to the time taken by the 3D reconstruction algorithm
(see Fig. 12a; typically from 10 to 30 seconds).

5 PROGRESSIVE 3D RECONSTRUCTION

DRF-based decomposition, introduced in the previous sec-
tion, results in a set of simpler line drawings. A straightfor-
ward solution to recover a 3Dmodel from such line drawing
parts is to first reconstruct 3D shapes from individual parts
of the line drawing independently and then integrate
the reconstructed 3D shapes into a complete 3D model.
However, as shown in Fig. 2d, such an approachmight easily
cause reconstruction artifacts. To address this problem we
introduce a novel progressive 3D reconstruction algorithm.
Below we first give the algorithm details in Section 5.1 and
then the implementation details in Section 5.2 and 5.3.

5.1 Algorithm
Our algorithm takes an estimate-and-optimize strategy and
sequentially reconstructs 3D shapes from line drawing parts
one by one based on already reconstructed parts. The
algorithm is summarized in Algorithm 2.

Algorithm 2. 3D Reconstruction from a Complex Line
Drawing.

1. decompose an input line drawing with Algorithm 1;
2. determine the reconstruction sequence ðGp1 ; . . . ; GpN Þ;
3. reconstruct a 3D Op1 shape from Gp1 ;
4. for i = 2 toN do
5. a) estimate a rough 3D shape fOpi with the information

of fGp1 ; . . . ; Gpig [ fOp1 ; . . . ; Opi�1g;
6. b) reconstruct a 3D shape Opi for Gpi based on fOpi

[fOp1 ; . . . ; Opi�1g and fGp1 ; . . . ; Gpig;
7. end for

Due to the progressive nature our algorithm would accu-
mulate reconstruction errors. To reduce such errors we use

the following scheme to derive a reconstruction sequence
(Step 2), i.e., an ordered list of the decomposed parts,
denoted as ðGp1 ; . . . ; GpN Þ, where N is the number of the
decomposed parts of the input line drawing. As illustrated
in Fig. 8 we first build a graph G0 with each vertex repre-
senting a line drawing part and each edge connecting two
neighboring parts. To determine the initial part Gp1 , we esti-

mate the reconstruction error starting from each vertex vG0pi

(i.e., dG0pi
of Algorithm 1) and take the one with the minimum

error as Gp1 . Mathematically it is formulated as follows:

Gp1 ¼ argmin
i

ErrðvG0pi
Þ ¼

XN

j¼1;j6¼i
disðvG0pi

; vG0pj
Þ; (1)

where disðvG0pi
; vG0pj

Þ denotes the length of the shortest path
between two vertices in the graph G0, which makes Gp1
roughly correspond to the center of the graph G0. In case
there are two or more vertices with the same minimum Err,
we pick Gp1 as the one corresponding to the part with the

maximum Nppe=Ne, where Nppe denotes the number of pairs
of parallel edges in a part, and Ne denotes the number of
the edges in the part, since a part with more parallel lines
usually corresponds to a more regular 3D shape and its
reconstruction is thus more robust. We determine the order
of the rest of the parts using classic breadth-first search in
G0, starting from the vertex corresponding to Gp1 .

In Step 3, a 3D shape is reconstructed from the initial part
Gp1 . Steps 4-7 sequentially reconstruct 3D shapes from the

subsequent parts, where fOpi is the rough 3D shape esti-

mated from the 3D information of the reconstructed 3D

shapes fOp1 ; Op2 ; . . . ; Opi�1g and fGp1 ; . . . ; Gpig. With fOpi ,

fOp1 ; . . . ; Opi�1g, and fGp1 ; . . . ; Gpig, a 3D shape Opi is recov-

ered by an optimization-based algorithm. As we will show
in Section 6 that, by estimating rough 3D shapes first, the
reconstruction algorithm usually converges much faster.

Step 6 can be achieved by adapting existing optimization-
based 3D reconstruction algorithms like those proposed in
[3], [10], and [12]. Specifically, Opi can be reconstructed by
minimizing the following objective function:

F ðZpiÞ ¼
XNc

j¼1
wjf jðZp1 ; . . . ;Zpi�1 ;ZpiÞ; (2)

where Zpi is the set of the z-coordinates of the vertices in the
ith part which are unknown and their initial values are

obtained from fOpi , Zp1 ; . . . ;Zpi�1 denote the known z-coordi-
nates of the vertices in the i� 1 already reconstructed parts,

Fig. 8. Illustration of determining the reconstruction sequence. (a) and
(b) An input line drawing and its decomposed parts. (c) A graph G0 built
where each vertex represents a part and each edge represents the con-
nection between two neighboring parts. (d) The determined reconstruc-
tion sequence ðGp1 ; . . .Gp5 Þ ¼ ðG0p3 ; G0p4 ; G0p5 ; G0p2 ; G0p1 Þ.
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f j, 1 � j � Nc, are the Nc constraints, i.e., image regularities,

derived from all the i parts, and wj is a weighting factor. We
adopt the most commonly used image regularities [3], [10],
[11], [12], including face planarity, line parallelism, line col-
linearity, skewed facial symmetry, isometry, corner orthog-
onality, and minimizing the standard deviation of angles in
the reconstructed objects.

Below we give the implementation details of how to
reconstruct an initial 3D shape (Step 3) in Section 5.2,
and how to estimate an initial 3D shape for a subsequent
part (Step 5) in Section 5.3.

5.2 3D Reconstruction of Initial Part
It is well known that the robustness of optimization-based
methods for 3D reconstruction from line drawings is often
sensitive to the initial settings of the z-coordinates of the
vertices [12]. There is no available 3D shape to guide 3D
reconstruction from the initial part Gp1 . For robustness we
independently reconstruct a 3D shape from Gp1 with differ-

ent initial settings: randomized initialization of z-coordi-
nates for multiple times ([11], [12], [13]) and initial zero
setting of z-coordinates ([14]). The reconstruction result cor-
responding to the minimum value of the objective function

F ðZp1Þ ¼
PNc

j¼1 wjf jðZp1Þ (part of Equation (2)) is selected as

the final 3D shape of the initial part. In our experiments, we
find that ten randomizations plus one zero setting are suffi-
cient to obtain a good 3D shape. It is worth mentioning that
if the initial part is a (quasi-)normalon [10] or has a cubic
corner [10], [34], [37], there exist more advanced algorithms
to derive a more effective initial approximation for the opti-
mization process.

5.3 3D Rough Shape Estimation of Subsequent
Parts

When the z-coordinates of the vertices of a line drawing have
beenpartially reconstructed, various image regularitieswhich
capture 3D geometrical relationships between parts can be
used to estimate a rough shape close to the optimal one for a
subsequent part, as illustrated in Fig. 9. For example, if two
edges in two line drawing parts under orthographic projec-
tion are parallel, they should be parallel in 3D space too.

From Section 3, we know that when the 3D shape of a
part has been reconstructed, the DRF of its neighboring part
reduces to one. In our derived reconstruction sequence, it is
easy to see that Gpi is a neighboring part of fGp1 ; . . . ; Gpi�1g.

Thus, the 3D shape of Gpi can be derived given a known

depth (z-coordinate) of one of its free vertices which is in Gpi

but not in the already reconstructed parts.
As illustrated in Figs. 9b, 9c, 9d, 9e, we use image regu-

larities [3], [10] including line collinearity (IRlc), line paral-
lelism (IRlp), line verticality (IRlv), and (standard deviation
of the angles (SDA) formed at a vertex equal to zero,
denoted as IRsda) to estimate the depth of one free vertex of
Gpi . After the depth of one free vertex is reconstructed, face

planarity (Fig. 9a) can then be used to derive the depths of
the other vertices in this part. It is possible that multiple
image regularities are in conflict with each other. To solve
this problem, we specify the priority of the four image regu-
larities as IRlc > IRlp > IRlv > IRsda. For instance, for a free
vertex whose depth can be derived by both IRlp and IRlv,
we use line parallelism to estimate its depth.

In the implementation, we firstly select all the vertices
with unknown depths as free vertex candidates, which con-
nect to a part whose 3D shape has been reconstructed, and
then we check if the condition of any image regularity is sat-
isfied for one of the free vertex candidates in the order of the
priority. If one image regularity is satisfied, we select the
corresponding vertex as the free vertex and compute its
depth with this image regularity. Finally, face planarity is
exploited to derive the rough depths of the other vertices in
this part. Note that when IRlp is used to derive the depth of
a free vertex, there usually exist multiple reconstructed lines
parallel to the line containing the free vertex. In this case, the
z-coordinate of the free vertex is set to the average of the val-
ues derived by these reconstructed lines.

6 EXPERIMENTS

We conducted several experiments to evaluate the efficiency
and effectiveness of the proposed decomposition and recon-
struction algorithms. We focused on comparisons with the
Divide-and-Conquer (DaC) method proposed by Liu et al.
[13] since their method can handle more complex manifold
objects than other previous methods. We implemented the
proposed algorithms in C++, and ran them on a PC with an
Intel(R) Dual Core(TM) i5 CPU M540@2.53GHz (only a sin-
gle thread used for simplicity).

In the first experiment we tested our decomposition
algorithm (Algorithm 1) and the decomposition algorithm
in DaC (Steps 1 and 2 of Algorithm 3 in [13]) on 30 line
drawings shown in the first and fourth columns of Fig. 10.

Fig. 9. Examples of estimating the unknown depths of vertices with image regularities. The vertices whose depths have been recovered are
marked by � in red and their 3D positions are used to estimate the depths of the vertices marked by in blue. (a) shows that the depths of
the vertices v5; v6; v7; v8 can be computed with the 3D positions of v1; v2; v3; v4 using face planarity. In (b), the depth of the vertex v3 can be
obtained with v1 and v2 using line collinearity. (c) shows how to estimate the depth of the vertex v10 using line parallelism, since edges {v1; v2},
{v3; v4}, {v5; v6}, and {v7; v8} are parallel with the edge {v9; v10} and the 3D positions of the vertices v1�9 have been recovered. (d) shows that
the depth of the vertex v2 is estimated by line verticality, since the 3D shape O1 of the bottom part has been reconstructed. (e) shows a case
in which the depth of the vertex v9 is estimated by SDA.
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Fig. 10. Thirty tested line drawings (Þrst and fourth columns), and their decomposition results by DaC (second and Þfth columns) and our algorithm
(third and sixth columns). Better viewed on the screen by enlarging the Þgure.
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Most of these line drawings were collected from previous
papers such as [12], [13], and [38]. The DRFs of these line
drawings vary from 4 to 17.

For the line drawings with indices (1)–(24), our algorithm
obtained the decomposition results similar to those by DaC.
Neither our algorithm (because their DRFs are already 4)
nor DaC (because they have no internal faces) succeeded to
decompose the two 4DRF line drawings (25) and (26). How-
ever, we will show in Section 7 that our algorithm can be
extended to handle these two drawings by generating some
new vertices and edges.

The line drawings (27–30) show four manifolds which
could not be decomposed by DaC (with the maximum
search depth Dmax set to 10), but were successfully decom-
posed by our algorithm. In these line drawings, the inter-
nal faces have more than 10 vertices, which is beyond the
predefined maximum search depth for DaC. The decom-
position results of the line drawings (27) and (28) indicate
that our algorithm can be extended to handling curved-
face manifolds if a curved surface is approximated by
multiple planar faces. The time for decomposing each of
these 30 line drawings was within 0.01 second with our
algorithm, and was much less than that needed by DaC
(about 5-14 seconds for each successfully decomposed
drawing).

We further evaluated computational performance on line
drawings of increasing complexity, as shown in Fig. 11.
There are in total seven line drawings (Fig. 11a), indexed by
seven loops O1�7 with Oi 	 Oiþ1, 1 � i � 6. The times for
decomposing O1�7 by our algorithm, DaC with Dmax ¼ 10
and DaC with Dmax ¼ 11, are illustrated by the three respec-
tive curves in Fig. 11b. The results indicate that our algo-
rithm is approximately linear in the number of line drawing
parts, while DaC is largely exponential. In addition, on O7,
our algorithm was about four orders of magnitude faster
than DaC with Dmax ¼ 11.

We conducted another experiment to evaluate the 3D
reconstruction performance of the proposedmethod, includ-
ing the decomposition step. Our method, PR for short, was
compared to DaC and LS, the method by Lipson and Shpi-
talni [3]. LS is a typical 3D reconstruction method without
line drawing decomposition. For fair comparison, the same
reconstruction algorithm [3] was used for PR, DaC and LS.

The line drawings (1)-(24) in Fig. 10 were used in this
experiment since the decomposition results by DaC and
our algorithm were similar. The convergence criteria for all

the algorithms were the same: stopped when the difference
between the values of the objective function in two
consecutive iteratons was below a given threshold (0.001 in
our experiment). For each line drawing we ran each
algorithm ten times. Two measurements were adopted to
evaluate the robustness of the reconstruction process using
these algorithms.

One is the average planarity error (APE) of all the faces of
the ten reconstructed 3D object parts O1�10 from a line
drawing L, defined as

APEðO1�10jLÞ ¼ 1

10DL

X10

k¼1

1

Nf

XNf

i¼1

XMfi

j¼1
Dk

ij

0

@

1

A; (3)

where

Dk
ij ¼

jak
fi

xk
jþbk

fi
yk

jþck
fi

zk
jþ1jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðak
fi
Þ2þðbk

fi
Þ2þðck

fi
Þ2

q ; ak
fi

; bk
fi

and ck
fi

are the parameters of the best-fit plane for face fi
obtained from the kth running (how to obtain the best-fit
plane from a set of vertices can be found in [3]), Mfi is the

number of vertices in face fi, DL ¼ maxfDx; Dyg denotes the
size of the original line drawing L (Dx is the width and Dy is
the height of L), Nf is the number of the faces in L, and
ðxk

j ; yk
j ; zk

j Þ is the 3D coordinate of the jth vertex of face fi

obtained from the kth running. The term Dk
ij denotes the

distance between vertex ðxk
j ; yk

j ; zk
j Þ and the best-fit plane.

Another measurement is the average line-parallelism
error (ALE) of all the parallel lines of the ten reconstructed
3D objects O1�10, defined as

ALEðO1�10jLÞ ¼ 1

10Np

X10

k¼1

X

ðli;ljÞ2S

uðððlki Þ3D; ðlkj Þ3DÞÞ; (4)

where S is the set of pairs of parallel lines ðli; ljÞ in the line
drawing which are recognized as parallel in 3D space by

users, Np is the number of pairs in S, and uðððlki Þ3D; ðlkj Þ3DÞÞ ¼
cos�1ððlki Þ3D 
 ðlkj Þ3DÞ is the angle between two unit vectors

ðlki Þ3D and ðlkj Þ3D of two 3D parallel lines corresponding to li
and lj, respectively, from the k running. In this experiment,
S was obtained by these two steps: 1) find the set of all the
pairs of parallel lines in the 2D line drawing (two lines were
regarded as parallel if the angle between them was less than
7�); 2) then remove the pairs that were not interpreted as
parallel by the users.

The quantitative evaluation results for these algorithms
on the test examples are shown in Fig. 12. Fig. 12a indicates
that PR is more efficient than the other two algorithms for
all the examples. It is because PR computes initial 3D shapes
which are already close to the optimal ones, thus greatly
reducing the iterations of the optimization algorithm in
reconstruction. It is shown in Figs. 12b and 12c that in most
cases our method led to more robust reconstruction results
than both DaC and LS. In fact large values of APE and ALE
often signal distorted or failed reconstructions. Fig. 13 shows
the reconstruction results from the first six line drawings of
the test examples. It can be seen that for some examples,

Fig. 11. (a) Seven line drawings of increasing complexity indexed by
seven loops. (b) The times used to decompose the line drawings in (a)
by our algorithm and DaC.
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informationmakes the combination of p1�3 still a 4DRFmani-
fold. In fact, we can always merge decomposed parts each
with fewer faces into a larger line drawing, which may or
may not represent a 4DRFmanifold.

Therefore, to remove the second condition, the follow-
ing four steps can be carried out: 1) run Algorithm 1
first; 2) check whether there is a part without any trihe-
dral vertex; 3) if there is such a part, then on this part,
run Algorithm 1 again but with a modified seed selection
criterion, allowing any pair of neighboring faces as a
seed; and 4) finally merge the parts whose numbers of
faces are smaller than a threshold. Developing a complete
merging method is our future work.

As shown in Figs. 10(25) and 10(26), a 4DRF object with
trihedral vertices and many faces cannot be decomposed by
Algorithm 1 or DaC. However, if suitable new edges and
vertices are generated on the original line drawing, then the
line drawing can still be decomposed into 4DRF parts. For
example, in Fig. 15c, if the dotted edges are added to the orig-
inal line drawing represented by the solid lines, our algo-
rithm could separate it into four cuboids (Fig. 15d). How to
design a method to automatically add such edges and verti-
ces is an interesting topic to explore further in the future.

Progressive 3D Reconstruction. The better performance of
our approach comes from the estimate-and-optimize strat-
egy for each subsequent part. There is still room for
improvement in this strategy. The estimation of the initial
3D shape for one part may be improved by selecting the
most suitable regularity depending on the nature of each
part (such as using the axonometric inflation scheme in [10]
for a quasi-normalon part). In addition, a better strategy,
which considers both the topological relationship between
parts and the reconstruction quality of each part, can be uti-
lized to determine a better reconstruction sequence of all
the decomposed parts.

3D Beautification. After a 3D object is reconstructed by our
algorithm (or other algorithms), it is possible to use a beauti-
fication algorithm to improve the result. There exist a few
methods [39], [40], [41] for this task, in which the goal is to
refine the x-, y-, and z-coordinates of all the 3D vertices for
example through constrained optimization. It should be
mentioned that if a reconstructed object is too distorted, a
3D beautification algorithm cannot help much usually;
developing a good reconstruction algorithm is more crucial.
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